Seasonal selection and resource dynamics in a seasonally polyphenic butterfly.

نویسندگان

  • N I Morehouse
  • N Mandon
  • J-P Christides
  • M Body
  • G Bimbard
  • J Casas
چکیده

Seasonal polyphenisms are widespread in nature, yet the selective pressures responsible for their evolution remain poorly understood. Previous work has largely focussed either on the developmental regulation of seasonal polyphenisms or putative 'top-down' selective pressures such as predation that may have acted to drive phenotypic divergence. Much less is known about the influence of seasonal variation in resource availability or seasonal selection on optimal resource allocation. We studied seasonal variation in resource availability, uptake and allocation in Araschnia levana L., a butterfly species that exhibits a striking seasonal colour polyphenism consisting of predominantly orange 'spring form' adults and black-and-white 'summer form' adults. 'Spring form' individuals develop as larvae in the late summer, enter a pupal diapause in the fall and emerge in the spring, whereas 'summer form' individuals develop directly during the summer months. We find evidence for seasonal declines in host plant quality, and we identify similar reductions in resource uptake in late summer, 'spring form' larvae. Further, we report shifts in the body composition of diapausing 'spring form' pupae consistent with a physiological cost to overwintering. However, these differences do not translate into detectable differences in adult body composition. Instead, we find minor seasonal differences in adult body composition consistent with augmented flight capacity in 'summer form' adults. In comparison, we find much stronger signatures of sex-specific selection on patterns of resource uptake and allocation. Our results indicate that resource dynamics in A. levana are shaped by seasonal fluctuations in host plant nutrition, climatic conditions and intraspecific interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mate preference for a phenotypically plastic trait is learned, and may facilitate preference-phenotype matching.

Fixed, genetically determined, mate preferences for species whose adult phenotype varies with rearing environment may be maladaptive, as the phenotype that is most fit in the parental environment may be absent in the offspring environment. Mate preference in species with polyphenisms (environmentally dependent alternative phenotypes) should therefore either not focus on polyphenic traits, be po...

متن کامل

On the fate of seasonally plastic traits in a rainforest butterfly under relaxed selection

Many organisms display phenotypic plasticity as adaptation to seasonal environmental fluctuations. Often, such seasonal responses entails plasticity of a whole suite of morphological and life-history traits that together contribute to the adaptive phenotypes in the alternative environments. While phenotypic plasticity in general is a well-studied phenomenon, little is known about the evolutiona...

متن کامل

Translating environmental gradients into discontinuous reaction norms via hormone signalling in a polyphenic butterfly.

Polyphenisms-the expression of discrete phenotypic morphs in response to environmental variation-are examples of phenotypic plasticity that may potentially be adaptive in the face of predictable environmental heterogeneity. In the butterfly Bicyclus anynana, we examine the hormonal regulation of phenotypic plasticity that involves divergent developmental trajectories into distinct adult morphs ...

متن کامل

Quantitative genetic analysis of responses to larval food limitation in a polyphenic butterfly indicates environment- and trait-specific effects

Different components of heritability, including genetic variance (V G), are influenced by environmental conditions. Here, we assessed phenotypic responses of life-history traits to two different developmental conditions, temperature and food limitation. The former represents an environment that defines seasonal polyphenism in our study organism, the tropical butterfly Bicyclus anynana, whereas ...

متن کامل

Temporal Gene Expression Variation Associated with Eyespot Size Plasticity in Bicyclus anynana

Seasonal polyphenism demonstrates an organism's ability to respond to predictable environmental variation with alternative phenotypes, each presumably better suited to its respective environment. However, the molecular mechanisms linking environmental variation to alternative phenotypes via shifts in development remain relatively unknown. Here we investigate temporal gene expression variation i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of evolutionary biology

دوره 26 1  شماره 

صفحات  -

تاریخ انتشار 2013